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Stochastically bounded Solutions of stochastic
iIntegrodifferential equations modeling neural
networks

Zhenkun Huang, Honghua Bin

Abstract— In these paper, by using stochastic integral properties about solutions of homogeneous linear equations and fixed-point
theorem, we investigate bounded dynamics of neural networks with stochastic effects and distributed delays. Some new criteria for the
existence of a unique stochastic bounded solution of stochastic newworks are given.
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1 INTRODUCTION

Tochastic differential equations and relative applications

have recently been studied intensively [1, 2, 3]. It is of great

interest to discuss qualitative behavior such as stochastic
boundedness, exponential stability, periodicity or almost peri-
odicity [6, 7, 8, 11] and so on. It is well known that stochastic
boundedness of stochastic differential equations depend on
it’s linearized homogeneous equations [9]. For this research
direction, II'chenko [5] established existence of a unique sto-
chastically bounded solution of a linear nonhomogeneous dif-
ferential eqution. Later, Luo [10] extended relative results to a
class nonlinear stochastic differential eqution and reported

some criteria foe existence of a stochastically bounded solution.

It is shown that such stochastically bounded solutions can in-
herit properties of the coefficients of the equation if they are
either stationary or periodic.

Meanwhile, there will exist interest qualitative behavior
about stochastic boundedness for neural networks with sto-
chastic perturbation. However, so far little is known about the
existence of a unique stochastically bounded solutions of ne-
rual networks and the aim of this paper to is close this gap.

In the present paper, we consider the following stochastic
neural networks with distributed delays [4]

dXi (t) = ['ai X (t) + i bij fj (Xj (t))
+irw ki (t—u)g;(x;(u)du+1]dt  @.1)

+ i hij (Xj (t))dwj (t)’

Where ieM={L2,--, M}, W(t) = (W,(t), "W, 1)) is
M-dimensional independent Wiener processes with respect to a
probability space (Q2, F, F,,—00 <t < o0, P) .Throughout this
paper, for each i, ] € M ,we suppose some basic assumptions:

a, >0, bij and |

Assumption 1. are real constants;

sup,., | f;(V)[£By <+, sup,. |g;(v)I<By <+,

SUP,.- |hi} V) [« Bhﬁ <+o0; Moreover, h;(), g;() and

hi}r () are Lipschitz-continuous with Lipschitz constant

ij >0, ng >0 and th >0, respectively.

hi}r (X) = h; (X) — X, where a; #0if 1= jand ;=0 if
1#J.

Assumption 2. Theconvolution-type kernel k;() is in

L*(0, +0) and satisfy with k(v =K e 0,+0).
o il ij

Based on some stochastic integral properties and fixed-point
theorem, we establish new criteria for the existence of a unique
stochastically bounded solution for (1.1) The nonautonomous
cases are alse considered.

2 Main results

Let (U M ,[[*]]) be a Banach space. The collection of all
measurable, square-integrable random variables, denoted by
L*(P,0™), equipped with norm || X .., = (E I X )",
where and the expectation E is defined by
E[g]= jﬂg(m)dp(a)). Define B, (0, L2(P,0™)) to be

the collection of all stochastic process X :[J — L*(P,0 ™),
which are continuous and bounded in quadratic mean. It is
then easy to check that B (I, L*(P,[J ™)) is a Banach space
when it is equipped with the norm

I X II.,= sup(E | X 1),
tel
For any given | € M ,It 0 -type homogeneous linear eqution [1]
dx; (t) = —a; x; (t)dt + o X, (£)dw; (t)
has a solution

%3 (1) = exp{a; (t—s) + o[ (t) - 2, ()1}
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which satisfys with the initial condition X;(S) =1, where
a :=—a —2"a’ <0.Forany arbitrary pell,
E(}(1)" = exp{[a; + p2"a;1(t - s) p}- 21

By It 0 s formula, we can check that X* (t) of (1.1) can be
represented in the following form

X (1) =2 (00 (s) + f (A5 (W) [Zb” f; (x5 (W)

+Zj ky (U=V)g; (X (V))Av + 1, — h!(x® (u))]du 22)

+ ZL (%5 ) "hj (] W)dw; ()], ieM

The following basic definition and three lemmas
are essential in the proof of our main results.

Definition 2.1. A solution X(t),t €[] ,of (1.1) is
said to be stochastically bounded if
Ilm ) sup P{ x(t)[>N}=0

© tel

holds for each | € M.
Lemma 2.1. ([5]) Assume that /(t) is a continu-

ous bounded function on t €[] . Then the follow-
ing reverse integral formula holds for S <t:

KO 5 ) v (W)=

= [ (w(u)dw (u) - 28 (O (U)du,
where 1€ M.
Lemma 2.2. ([5]) Assume that /() is a continu-
ous function with Sup,_, |y (t) |< K <+o0. For
each I € M, one gets
@) for Vrell and pe(0,1+2ac,’), there
are constants T >0,L=L(K)>0 and

0 < g <1 such that
2O o Oy @) dr> N2} < LN g

foralltell,N>0and nell;
(ii) the following two limits
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Jim [} (@ ()du =], @ (u)du

. S —00
lim ["% O ()dey (W) =[ &} Oy (u)de, (1)

exist almost surely for all t €[], respectively.
Lemma 2.3. ([12]) Let {X,F;0<t<+0o0} be a
submartingale whose every path is right-
continuous, let [0,7] be a suninterval of
[0, +90). Then Doob’s maximal inequality holds:

E(sup X,)" < (—)E(X "), p>1

o<t<r

Provided X, >0 as. P for every t >0, and
E(X}) < +o.

For simplicity, for real constant C, denote ¢’ '=|C|. Then
our main result follows as:
Theorem 2.1. There exists a unique stochastically bounded

solution X (t),t €[] , of (L1)if 28 >a’,ie M, and
( fi bu) (Lg) kij (th)z
0= max 3M — ! +— <1,
{ Z[ a a,*lTT aay, a, I

Where ail =, +22 a;; and ai =2, +a,;) . In this case

of the existence, we have

K@= OB, T 067 W)
+ ir@o ki (U—=Vv)g;(x;™ (u))dv+1;]du (2.3)

RO @0, 0

Moreover,

SUP E || x ™ (t) [P < +oc.
tel
Proof. By Lemma 2.1, we get from (2.2) that

CO=X0%(6)- 3] 04/0) T (0o,
SRR ANEH®)
+Z [ Ky (u=v)g; (x; (v)dv+ 1, ]du

Putting X(S) =0 in the above and approaching the limit as
S — —o0, due to Lemma 2.2, we get the limit X~ (t) which is

a solution of (1.1). The process X~ (t), t €[] , is measurable
with respect to the flow

I =c{o(s,)-0(s):s <8, <t ke M}
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For any given 2°(t)eB(J,L’(P,0M)) , define

ol )= (e )+ 0 (@ O by
0@ )= x“(t)[zb., f,(z," (W) 3] Ky, 0 v 1 Tdu] @9

P [x“(t)(Zb.J 5067 ()

>N'}<LNP,
where L, <400 and the integral is defined for all trajectories.
In fact, by Lemma 2.2, we have

—Zj % (Oh) (2, ()d @, (u) PU[ [x“(t)(zb., 067 (W)

where | € M. Now we need three steps to complete our proof. ) ) )
Stepl: We will prove that (p(Z_OC (t)) is continuous. Since +; Lo ki (U=V)g; (x;" (V))dv+ L T"du [> N}

+ZJ:OO ky (U=V)g;(z;"(v))dv +I;]du

Elf,. 7“(”D‘)[Zbu fi(z" W) <[ [x“(txzbu (67 (u)

+ZL , (U=V)g, (2" (V)dv+ 1, Tdu +z [ Ky @), 07 ()dv+ LT du > N2 7}
[ x”(t)[Zb” f (W) sgp{jfffm)[x?(t)(ébﬂf,—(x;@(u>)|

+ZL@ ky (U=Vv)g,(z;” (v))dv+ 1, ]1du +J§; fw ki (U=v)|g; (" (W) [dv+17)]"du > N"27"}

= t-Tn M
<) P e ( bi'B, kiB, +1/']du>N"2"
—'[ 7&”(’[+Dt)[2b” J(Z_°°(u)) nzz(; {L—T(n+1)[ '()(JZ:; +Z ij Pg; T i ]7du> }
. L
<Y LNPQ"<——N"",
+ZI ki (U—v)g;(z;"(v))dv + I;]du nz,:; 1-q
=R Second, we claim that
Step 2: We will show the process X~ (t) is stochastically P{| J‘t‘w X! (t)hi; (XJToc (u))da)j WPNI<LN?, @6

bounded. Forany N >0,
Y for rell and L, <+o0. Let o}(u)=0,(t-u)-o,(u).

PUX" (O NY<P{ [~ x“(t)[Zb., fOGC7W)  Since
[ m O 05" @)de, ) =

N
+Z k. (U—Vv)g, (x;"(v))dv+1,]du > 3 3 i
i J‘*@ ! 1 M+l (24 J.o i (t)hi}(xjw(t—u))da)ﬁ (u)
u o N is a martingale. Apply Doob’s maximal inequality, there
+Z P{l I ; (t)h (x;"(u))dw; (u) > +1} exist a constant C < +00 such that
oM. PA [, & (0N G (u)d e, (u) > N3
It is sufficient to prove that every term in the right side of (2.4) is ;
stochastically bounded. < |I_r)13O P{sup | J. A7 (Ohy (X" (U)deo,; (u) > N}
Let rell and pe(0,min_, {l+2ac;’}). First, we ot
claim that < lim N E[sup | [ & (Oh! (6" @)deo; (W) ]

< lim N’Z“?:E[j [1Y (6)h! (™ (u))] du]
< lim N eE[-[ " [x; O ()] dul.
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So it remains to show that

E[-[ I8 (Oh" ()] dul < +o0
for t €[J. Taking I =2 and

p=2+5(0<5<min,_,{2aa; -1}) int the prood
of (2.5), we have

E[-[ TR O™ )] du]

< 1+f 220 pga" < L[ IR O] (7 ()] du<4™}
n=0

<13 2202 pga” <[ TR O] (" ()] du}

<L+ 2227 =14 1 4;1_5 :
n=0 -

Thus, (2.6) holds and we have proved that the solution is
stochastically bounded. Together with (2.5) and (2.6), one
gets that

PIX (O > N}< LN, 27)
where L, <+00. Using (2.7) for
p=2+06(0<06<min_ {2aa’ —1}), we get

E|x7(t) P<1+ ) 229P2" g x (1) [< 2"}
n=0

<1+ 2209pg2" 4 X (1) [}

n=0 (2.8)
<1+ Z 22(n+l) L3 2—n(2+(>‘)

n=0

=1+ 4L3
1-27°
Step 2: Let BZ (1, L*(P,[J ™)) be the collection of all

< +oo

stochastic bounded process X:[1 — L*(P,0") with

_ 4L,
E|x™@1)|°P< .
WP

c B.(J,L*(P,0™)) is a Banach space. Define
(X (1)) = (@, (X (1), o (X7 (1)) by

2 (@) = RO 07 ()

Obviously, BZ ([, L*(P,0 ™))

+ i"‘“@ ky (U=Vv)g;(X;" (v))dv+ I;]du

} i o RO g7 W)de W),

where €M and X *(t) e BY (0, L*(P,0™)). 1t fol-

lows from Step 1 that @ maps By (1, L*(P,00 ™)) into
itself. To complete the proof, we will prove that ¢ has a
unique fix-point. For any

X(t),y " (t)e BZ (U, LZ(P,D M ), we get
(X)) - (y 1) =

_It_m K (t)Z by [f; (%™ (U)) =(y;” (u))]du
+Zl Iw ki (U=v)[g; (x;"(v))—9;(y;" (v))ldv]du

3 s .

_Z; J‘t A (t)[hir X;w (u)) - hij (y;w (u))ld ; (u)y ieM
j=

It is obviously that

(") =y " (1)
<20 [ RO 1057 @) - £ () @) du

D[k =019, 067 () -9,y W)Iavlau

+§; [ R O 0G W) by (v, (W)Ide; (u), TeM

Since (Z :nil r)’ <
Elo,(x(©)=o,(y @)

<ED3 M (L B[ R 01 @)y, ()] duF

L 2 .
i n,r,”, we can write:

+§3M (LT[ RO Ky (=v) ;" () =y, ()| dv]duT?

+i3|\/| (L, VIR OG-y U)o, )] ieM.
Let 7 (t) =exp{a (t—s)+2a;[@ (t) — @ (s)]}. Then,
E(z (1)" =exp{[a; +2pe;](t-8)p} for any

p €ll. Now, using Cauchy-Swhwarz inequality we can
write:
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+_23M(Lg,)Z[f”exp{a:(t—u)}du][ﬁf(t)[j_“wku (U=v) b (V)= ;" (v) | dvldu]?

References

+Z3M Z[II R (O0G" W) -y} (W)da; u)]’] B

by, [2]
< ZI:SM %L Ex’ (0dusupE " (1) - y;" (1) P
j= i <

(3]

] e s 1m0 n

+Z3M (L, )Z[j‘t_x Ex (t)zdu]slte{p E[x"(u)-y;" ().
It follows from (2.1) that (5]
Elg, (X (t)) —p(y ")

2

b
<23M supElx’“(u) y; () F

|1

(6]

(71

(j ki (V) sup E | (1) =y, ()
' ')12 [8]
+23M ——sup E | x;" (u) - y;*(u) o]

IZ tell

2 2
(ng ) (th}) —o0 -0 2

Thus, 1t follows that

2

EII(/>i(><‘°°(t))—coi(y‘”(t))ll2 [11]
L, bj)* (Lg_)2 (hf)
s rE%X{Z%M Z[ afa*frﬁ a ;i_ + a, ]} [12]

xstuﬂp E|l Xj’“’ RO
<OSUpE || x;" (1) - ;" () If

Consequently, if ® <1, then (1.1) has a unique fixed-
point in BZ (J,L*(P,00 ™)), which can be express ex-
plicitly by (2.3). The proof is complete.

3 Conclusions

By using stochastic integral properties of homogeneous
linear equations and fixed-point theorem, we investigate
bounded dynamics of delayed neural networks with sto-
chastic effects. Some new criteria for the existence of a
unique stochastically bounded solution of stochastic net-
works are given. Our results can be generalized to nonau-
tonomous cases.
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